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Abstract. This paper is a continuation of earlier work by the first author who determined
the John–Nirenberg constant of BMOp

(
(0, 1)

)
for the range 1 ≤ p ≤ 2. Here, we compute

that constant for p > 2. As before, the main results rely on Bellman functions for the
Lp norms of logarithms of A∞ weights, but for p > 2 these functions turn out to have a
significantly more complicated structure than for 1 ≤ p ≤ 2.

1. Preliminaries and main results

For a finite interval J and a function ϕ ∈ L1(J), let 〈ϕ〉
J

denote the average of ϕ over J

with respect to the Lebesgue measure, 〈ϕ〉
J

= 1
|J |
∫
J ϕ. Take an interval Q and p > 0, and

let BMO(Q) be the (factor-)space

(1.1) BMO(Q) = {ϕ ∈ L1(Q) : ‖ϕ‖BMOp(Q) := sup
interval J⊂Q

〈|ϕ− 〈ϕ〉
J
|p〉1/p

J
<∞}.

It is a classical fact that all p-based (quasi-)norms are equivalent, which justifies omitting the
index p in the left-hand side.

A weight is an almost everywhere positive function. We say that a weight w belongs to
A∞(Q), w ∈ A∞(Q), if both w and logw are integrable on Q and the following condition
holds:

[w]A∞(Q) := sup
interval J⊂Q

〈w〉
J
e
−〈logw〉

J <∞.

The quantity [w]A∞(Q) is called the A∞(Q)-characteristic of w. When Q is fixed or unim-
portant, we write simply BMO for BMO(Q) and A∞ for A∞(Q).

BMO functions are locally exponential integrable. We can state this property in the form of
the so-called integral John–Nirenberg inequality, which is a variant of the classical weak-type
inequality from [5].

Theorem (John–Nirenberg). Take p > 0. There exists a number ε0(p) > 0 such that if
ε ∈ [0, ε0(p)), Q is an interval, and ϕ ∈ BMO(Q) with ‖ϕ‖BMOp(Q) ≤ ε, then there is a
number C(ε, p) > 0 such that for any interval J ⊂ Q,

(1.2) 〈eϕ〉
J
≤ C(ε, p)e〈ϕ〉J .

We will always use ε0(p) to denote the best – largest possible – constant in this theorem and
call it the John–Nirenberg constant of BMOp (on an interval). Likewise, C(ε, p) will denote
the smallest possible constant in (1.2).

Observe that (1.2) means that if ϕ ∈ BMO, then eεϕ ∈ A∞ for all sufficiently small ε > 0.
For ϕ ∈ BMO, let

(1.3) εϕ = sup{ε : eεϕ ∈ A∞}.
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In fact, it can be shown that

ε0(p) = inf{εϕ : ‖ϕ‖BMOp =1} = sup{ε : ∀ϕ, ‖ϕ‖BMOp =1 =⇒ eεϕ ∈ A∞}.
In this paper, our goal is to compute ε0(p) for the case p > 2. Here are some previous

results in that direction: Korenovskii [6] and Lerner [7] computed the analogs for the weak-
type John–Nirenberg inequality of ε0(1) and C(ε, 1), respectively; in [9], we determined ε0(2)
and C(ε, 2); in [12], the second author and A. Volberg found all constants in the weak-type
inequality for p = 2; and, finally, in [8], the first author determined ε0(p) for p ∈ [1, 2]
(including new proofs for the cases p = 1 and p = 2) and C(ε, p) for p ∈ (1, 2] and large
enough ε. This last paper built the framework that we follow here, and we refer the reader to
it for an in-depth discussion of the tools involved and the differences between the cases p = 2
and p 6= 2.

Let us state the relevant theorem from [8].

Theorem 1.1 ([8]). For p ∈ [1, 2],

ε0(p) =

[
p

e

(
Γ(p)−

∫ 1

0
tp−1et dt

)
+ 1

]1/p

.

Furthermore, if 1 < p ≤ 2, then for all ε ∈ [(2− p)ε0(p), ε0(p)),

(1.4) C(ε, p) =
e−ε/ε0(p)

1− ε/ε0(p)
;

and for all 0 ≤ ε < 2
e ,

(1.5)
e−

e
2
ε

1− e
2ε
≤ C(ε, 1) ≤ 1

1− e
2 ε
.

We can finally complete the picture for all p ≥ 1. Remarkably, the formula for ε0(p) for
the case p > 2 is the same as for 1 ≤ p ≤ 2, though it takes much more work to show.

Theorem 1.2. For p > 2,

(1.6) ε0(p) =

[
p

e

(
Γ(p)−

∫ 1

0
tp−1et dt

)
+ 1

]1/p

.

In contrast with the case 1 < p ≤ 2, for p > 2 we do not know the exact C(ε, p) for any ε.
While we could estimate this constant in a manner somewhat similar to (1.5), the estimates
we currently have seem much too implicit to be useful, so we omit them.

Without going into details, we mention an important difference between the cases p ≤ 2
and p > 2. It was shown in [8] that the constant ε0(p) is attained in the weak-type John–
Nirenberg inequality for 1 < p ≤ 2 (the case p = 1 was treated in [6] and [7], while the case
p = 2 had been previously addressed in [12]). However, the method used to show this fact
for p ≤ 2 fails for p > 2, and we do not actually know if the constant is attained (though we
conjecture that it is).

On the other hand, another interesting result from [8] does go through for p > 2. Specifically,
we have the following theorem, which extends to p > 2 the main result of Corollary 1.5
from [8]. It is a sharp lower estimate for the distance in BMO to L∞ in the spirit of Garnett
and Jones [1].

Theorem 1.3. If p > 2, Q is an interval, and ϕ ∈ BMO(Q), then

(1.7) inf
f∈L∞(Q)

‖ϕ− f‖BMOp(Q) ≥
ε0(p)

min{εϕ, ε−ϕ}
,
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and this inequality is sharp.

As explained in [8], the main idea behind computing ε0(p) for p 6= 2 is to consider the dual
problem: instead of estimating the values of ‖ϕ‖BMOp for which the exponential oscillation

〈eϕ−〈ϕ〉〉 might become unbounded, one estimates from below BMOp oscillations of logarithms
of A∞ weights and computes their asymptotics as the A∞ -characteristic goes to infinity. This
idea is formalized in the following general theorem.

Fix p > 0. For C ≥ 1, let

(1.8) ΩC = {x ∈ R2 : ex1 ≤ x2 ≤ C ex1}.

For an interval Q and every x = (x1, x2) ∈ ΩC , let

(1.9) Ex,C,Q = {ϕ ∈ L1(Q) : 〈ϕ〉
Q

= x1, 〈eϕ〉Q = x2, [eϕ]A∞(Q) ≤ C}.

We will call elements of Ex,C,Q test functions. Define the following lower Bellman function:

(1.10) bp,C(x) = inf{〈|ϕ|p〉
Q

: ϕ ∈ Ex,C,Q}.

Theorem 1.4 ([8]). Take p > 0. Assume that there exists a family of functions {bC}C≥1 such
that for each C, bC is defined on ΩC , bC ≤ bp,C , and bC(0, ·) is continuous on the interval
[1, C]. Then

(1.11) εp0(p) ≥ lim sup
C→∞

bC(0, C).

Thus, to estimate ε0(p), we need a suitable family {bC}C of minorants of bp,C . Just as was
done in [8], we actually find the functions bp,C themselves, for all p > 2 and all sufficiently
large C. We proceed as follows: in Section 2, we construct the so-called Bellman candidate,
denoted bp,C . This construction is more delicate and more technical than the one in [8], and
we briefly discuss the challenges involved. The proof that bp,C ≤ bp,C constitutes Section 3. It
is then an easy matter to prove Theorems 1.2 and 1.3, and it is taken up in Section 4. Finally,
in Section 5, we obtain the converse inequality by demonstrating explicit test functions that
realize the infimum in (1.10).

2. The construction of the Bellman candidate

For R > 0, let

ΓR = {x ∈ R2 : x2 = Rex1}.
Then the domain ΩC from (1.8) is the region in the plane lying between Γ1 and ΓC .

2.1. Discussion and preliminaries. As mentioned earlier, the construction of the Bellman
candidate given here for the case p > 2 is more involved than those presented in [8] for the
cases p = 1 and p ∈ (1, 2]. However, the main goal is the same as before and simple to state:
we are building the largest locally convex function b on ΩC satisfying the boundary condition
b(x1, e

x1) = |x1|p.
Let us briefly explain the similarities and differences between the cases p ∈ (1, 2] and

p > 2 (the case p = 1 is different from both). In all cases the graph of the candidate b is
a convex ruled surface, which means that through each point on the graph there passes a
straight-line segment contained in the graph. The domain ΩC then splits into a collection
of subdomains with disjoint interiors, ΩC = ∪jRj , such that b is twice differentiable and
satisfies the homogeneous Monge–Ampère equation bx1x1bx2x2 = b2x1x2 in the interior of each
Rj . In addition, for each subdomain Rj , either b is affine in the whole Rj , or Rj is foliated
by straight-line segments connecting two points of the boundary Γ1 ∪ΓC , and each point x ∈
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int(Rj) lies on only one such segment. We call such segments Monge–Ampère characteristics
of b. Typically, if one knows the characteristics everywhere in ΩC , one knows the function b.

Thus, to construct the candidate one has to understand how to split ΩC into subdomains
and how to foliate each of them, so that the resulting function b is locally convex. If this is
done while ensuring certain compatibility conditions, then b will almost automatically be the
largest locally convex function with the given boundary conditions, as desired. However, this
is, in general, a difficult task, and the situation is further complicated by the fact that the
splitting is usually different for different C.

Fortunately, there is now a fairly general theory for building such foliations on special non-
convex domains such as ours. It was started in [10] in the context of BMO2; much developed
and systematized in [2] and [3] (still for the parabolic strip of BMO2 ); and is now being
adapted to general domains, such as ΩC , in [4]. We also mention the recent paper [11], which
formalized the theoretical link between Bellman functions and smallest locally concave (or
largest locally convex, as is the case here) functions on the corresponding domains.

A key building block for many Monge–Ampère foliations is the tangential foliation. Let us
explain this notion in our setting.

For C ≥ 1, let ξ = ξ(C) be the unique non-negative solution of the equation

e−ξ = C(1− ξ) : 0 ≤ ξ < 1.

Note that ξ(1) = 0 and that ξ is strictly increasing with limC→∞ ξ(C) = 1. Let

(2.1) k(z) =
ez

1− ξ
, z ∈ R,

and define a new function u = u(x) on ΩC by the implicit formula

(2.2) x2 = k(u)(x1 − u) + eu.

This function has simple geometrical meaning, illustrated in Figure 1: if one draws the one-
sided tangent to ΓC that passes through x, so that the point of tangency is to the right
of x, then this tangent intersects Γ1 at the point (u, eu), while the point of tangency is
(u+ ξ, Ceu+ξ). In particular u(0, C) = −ξ. (We note that in [8], ξ and u were called ξ+ and
u+, respectively).

In the case 1 < p ≤ 2, if C was large enough, all of ΩC was foliated by the tangents (2.2),
for u ∈ (−∞,∞); thus, we did not have to split it into subdomains. However, for p > 2,
this uniform tangential foliation fails to yield a locally convex function on the whole ΩC , for
any C. What actually happens — and, again, only for sufficiently large C — is shown on
Figure 2 later in this section. There we have two tangentially foliated subdomains, R1 and
R3, which are linked by a special “transition regime” consisting of two more subdomains:
R2, where the candidate is affine and the foliation is thus degenerate, and R4, where the
characteristics are chords connecting two points of Γ1. (In recent Bellman-function literature,
these two particular shapes are called “trolleybus” and “cup”, respectively; see [2, 3, 4].) This
transition regime shrinks as C grows, but never disappears. To show how all this fits together,
we need some technical preparation.

2.2. Technical lemmas.

Lemma 2.1.

(1) If w > 0 and v ∈
(
− w,−w p−1

p

)
, then

(2.3)
wp−1 + (−v)p−1

ew − ev
< (p− 1)(−v)p−2e−v.
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Figure 1. The geometric meaning of u(x) and ξ

(2) If 0 < w ≤ p−2
p−1 and v ∈ (−w, 0), then

(2.4)
wp−1 + (−v)p−1

ew − ev
< (p− 1)wp−2e−w.

Proof. For Part (1), note that ew−v − 1 ≥ w − v > 0, and so it is sufficient to check that

wp−1 + (−v)p−1 < (p− 1)(−v)p−2(w − v) .

Put θ = − v
w ; then this inequality becomes

(p− 2)θp−1 + (p− 1)θp−2 − 1 > 0 ,
p− 1

p
< θ < 1 .

The left-hand side is increasing in θ, and equals 2 (p−1)p

pp−1 − 1 when θ = p−1
p . In turn, this is

an increasing function of p, equal to 0 at p = 2.
For Part (2), observe that since w > −v, and 1− w ≥ 1− p−2

p−1 = 1
p−1 , we have

1− e−(w−v) > (w − v)
[
1− 1

2
(w − v)

]
> (w − v)(1− w) ≥ w − v

p− 1
,

and (2.4) follows from the obvious relation wp−1 + (−v)p−1 < wp−2(w − v). �

For any v < 0 and w > 0, let

(2.5) r(v, w) =
ew − ev

w − v
, q(v, w) =

wp − (−v)p

w − v
.

Lemma 2.2. For each w ∈
(
0, p−2

3p

)
, there exists a unique v ∈

(
− w,−w p−1

p

)
such that

(2.6)
q(v, w) + p(−v)p−1

r(v, w)− ev
=
pwp−1 − q(v, w)

ew − r(v, w)
= p

wp−1 + (−v)p−1

ew − ev
.

Proof. Observe that it is enough to show only the first equality in (2.6), as the second one
then follows by elementary rearrangement. In turn, this first equality is equivalent to the
statement

(2.7) F (v, w) := (ew−ev)(wp−(−v)p−pwp−1−p(−v)p−1)+p(w−v)(wp−1ev+(−v)p−1ew) = 0.
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Assume w ∈ (0, p−2
3p ) and let λ = p−1

p . To show that there exists v ∈ (−w,−λw) such that

F (v, w) = 0, we compare the signs of F (−w,w) and F (−λw,w).
Since F (−w,w) = 4pwp−1(w coshw − sinhw) > 0, we want to check that F (−λw,w) < 0.

To that end,

F (−λw,w) = (ew − e−λw)
[
(1− λp)wp − p(1 + λp−1)wp−1

]
+ p(1 + λ)wp

[
e−λw + λp−1ew

]
,

and the inequality F (−λw,w) < 0 is equivalent to

(1 + λ)w

e(1+λ)w − 1
− 1 +

1 + pλp−1 + (p− 1)λp

p(1 + λp−1)
w < 0.

Let

ψ(t) =
t

et − 1
− 1 +

1 + pλp−1 + (p− 1)λp

p(1 + λ)(1 + λp−1)
t .

We would like to show that ψ(t) < 0 for t ∈ (0, p−2
3p (1 + λ)). Note that for t > 0,

et > 1 + t+
1

2
t2 =⇒ t

et − 1
− 1 < − t

t+ 2
.

Therefore, for t > 0,

ψ(t) < −t
[ 1

t+ 2
− 1 + pλp−1 + (p− 1)λp

p(1 + λ)(1 + λp−1)

]
,

and it is sufficient to check that

p− 2

3p
(1 + λ) <

p(1 + λ)(1 + λp−1)

1 + pλp−1 + (p− 1)λp
− 2 =

(p− 2)(1− λp) + pλ(1− λp−2)

1 + pλp−1 + (p− 1)λp
.

Since (p− 2)(1− λp) + pλ(1− λp−2) > (p− 2)(1 + λ)(1− λp−1) and λp < λp−1, it is enough
to verify that

3 >
1/p+ (2− 1/p)λp−1

1− λp−1
=

2

1− λp−1
− 2 + 1/p.

This is so because the right-hand side is decreasing in p and equals 5
2 when p = 2. This proves

that the desired v exists for each w.
To show that v is unique, we differentiate the function F with respect to v. This derivative

can be written as follows:

Fv(v, w) =
(
ew(w − v)− ew + ev

)
ev
(
pwp−1(w − v)− wp + (−v)p

ew(w − v)− ew + ev
− p(p− 1)(−v)p−2e−v

)
=
(
ew(w − v)− ew + ev

)
ev
(
p
wp−1 + (−v)p−1

ew − ev
− p(p− 1)(−v)p−2e−v

)
,

where we used the second equality in (2.6). Now, the first factor is positive, because the
function t 7→ et is strictly convex, while the last factor is negative by (2.3). Therefore,
Fv(v, w) is negative for any root v of the equation F (v, w) = 0 that lies in the interval(
− w,−w p−1

p

)
, which is possible only when such a root is unique. �

From now on, in using v and w we will always presume that w ∈ (0, p−2
3p ), v ∈ (−w,−w p−1

p ),

and the pair {v, w} is related by equation (2.6). For such v and w, each of the three equal
quantities in (2.6) is a function of w, and it is convenient to give them a common name. Let

(2.8) D(w) =
q(v, w) + p(−v)p−1

r(v, w)− ev
=
pwp−1 − q(v, w)

ew − r(v, w)
= p

wp−1 + (−v)p−1

ew − ev
,

and D is a function of w defined on the interval
(
0, p−2

3p

)
. Let us list some of its properties.
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Lemma 2.3. We have

(2.9) D(w) < p(p− 1)(−v)p−2e−v

and

(2.10) D(w) < p(p− 1)wp−2e−w.

Furthermore, D′ > 0 on
(
0, p−2

3p

)
.

Proof. Inequalities (2.9) and (2.10) come directly from (2.3) and (2.4), respectively (note that
p−2
3p < p−2

p−1 , so (2.4) applies).

To check the sign of D′, we will treat q and r as functions of w and use the prime to
indicate the total derivative with respect to w. Thus, q′ = qw + qvvw and r′ = rw + rvvw,
where vw can be computed from equation (2.7). Also denote f(w) := wp and g(w) := ew.

We will need the simple but key fact that equation (2.6) can be written as

(2.11)
q′

r′
=
q − f ′

r − g′
= D.

Using this identity, we have

D′ =
(q − f ′
r − g′

)′
=

(q′ − f ′′)(r − g′)− (q − f ′)(r′ − g′′)
(r − g′)2

=
g′′(q − f ′)− f ′′(r − g′)

(r − g′)2
=

g′′

r − g′
(q − f ′
r − g′

− f ′′

g′′

)
.

Since g is strictly convex, we have g′′ > 0 and r − g′ < 0. On the other hand, the expression
in parentheses is negative by (2.10). �

For p > 2, let

(2.12) ξ0(p) = 1− 1

3p+2Γ(p)
, C0(p) =

e−ξ0(p)

1− ξ0(p)
.

Lemma 2.4. Assume ξ > ξ0(p). Let

c1 = ξ
[
e(1− ξ)Γ(p− 1)

]1/(p−2)
, c2 = ξ

[
2e(1− ξ)Γ(p)

]1/(p−2)
.

Then the equation

(2.13)
(1

ξ
− 1
)∫ ∞

w
sp−2e−s/ξ ds− wp−2e−w/ξ = 0

has a unique solution w∗ in the interval (0, c1).
Furthermore, the equation

(2.14)
(1

ξ
− 1
)
p(p− 1)ew(1/ξ−1)

∫ ∞
w

sp−2e−s/ξ ds = D(w)

has a unique solution w in the interval (w∗, c2).

Proof. First observe that c1 < c2 < ξ. The first inequality is trivial, while the second is
equivalent to ξ > 1 − 1

2eΓ(p) , which is clearly satisfied by the assumption ξ > ξ0(p). Second,

we have c2 <
p−2
3p . Indeed, this inequality is equivalent to

ξ > 1−
(
1− 2

p

)p−2

2e (3ξ)p−2Γ(p)
.
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Since ξ < 1 and
(
1− 2

p

)p−2
> e−2, this inequality is weaker than ξ > 1− 9

2e33pΓ(p)
, which is

in turn weaker than ξ > ξ0(p).
Consider equation (2.13). When w = 0, the left-hand side of (2.13) is positive. For w = c1,(1

ξ
− 1
)∫ ∞

c1

sp−2e−s/ξ ds− cp−2
1 e−c1/ξ = (1− ξ)ξp−2

∫ ∞
c1/ξ

sp−2e−s ds− cp−2
1 e−c1/ξ

< (1− ξ)ξp−2Γ(p− 1)− cp−2
1 e−c1/ξ = ξp−2(1− ξ)Γ(p− 1)

(
1− e1−c1/ξ) < 0,

since c1 < ξ. Thus, a solution w∗ ∈ (0, c1) exists. To prove that it is unique, we note that the
left-hand side of (2.13) is decreasing in w for w ∈ (0, p− 2), and that c1 < p− 2.

Turning now to (2.14), for w = w∗ we have, by (2.13) and (2.10),(1

ξ
− 1
)
p(p− 1)ew∗(1/ξ−1)

∫ ∞
w∗

sp−2e−s/ξ ds = p(p− 1)wp−2
∗ e−w∗ > D(w∗).

Observe that for any w, since 1− ev−w < 1− e−2w < 2w,

D(w) = p
wp−1 + (−v)p−1

ew − ev
> pe−w

wp−1

1− ev−w
>

1

2
pe−wwp−2.

Therefore, putting w = c2 in the left-hand side of (2.14) we get(1

ξ
− 1
)
p(p− 1)ec2(1/ξ−1)

∫ ∞
c2

sp−2e−s/ξ ds < (1− ξ)ξp−2pΓ(p)e1−c2 =
1

2
pe−c2cp−2

2 < D(c2),

and, hence, a solution w ∈ (w∗, c2) exists. To prove uniqueness, observe that the derivative of
the left-hand side of (2.14) is a positive multiple of the left-hand side of (2.13); thus, it equals
zero at w = w∗ and is decreasing for w ∈ (0, p− 2); in particular, it is negative for w > w∗.
Therefore, the left-hand side of (2.14) is decreasing in w for w ≥ w∗, while by Lemma 2.3,
the right-hand side is increasing. �

Remark 2.5. In what follows, in addition to w, we will also use v, which is the unique solution
of the equation F (v, w) = 0 guaranteed by Lemma 2.2.

2.3. The Bellman candidate. As mentioned earlier, we now split domain ΩC into four
subdomains, ΩC = ∪4

j=1Rj . In addition to the numbers v and w given by Lemma 2.14 and

Remark 2.5, the definition below uses the function k from (2.1) and function r from (2.5).
The splitting is pictured in Figure 2.

(2.15)
R1 =

{
x ∈ ΩC : x2 ≤ k(w)(x1 − w) + ew

}
∪
{
x ∈ ΩC : x1 ≥ w + ξ

}
;

R2 =
{
x ∈ ΩC : x2 ≤ k(v)(x1 − v) + ev, x2 ≥ r(v, w)(x1 − w) + ew, x2 ≥ k(w)(x1 − w) + ew

}
∪
{
x ∈ ΩC : v + ξ ≤ x1 ≤ w + ξ, x2 ≥ k(v)(x1 − v) + ev, x2 ≥ k(w)(x1 − w) + ew

}
;

R3 =
{
x ∈ ΩC : x1 ≤ v + ξ, x2 ≥ k(v)(x1 − v) + ev

}
;

R4 =
{
x ∈ ΩC : x2 ≤ r(v, w)(x1 − w) + ew}.

Our Bellman candidate will have a different expression in each of the four subdomains,
requiring several auxiliary objects. For z ∈ R, let

(2.16) m1(z) =
p

ξ
ez/ξ

∫ ∞
z

s|s|p−2e−s/ξ ds,
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Figure 2. The splitting of ΩC for sufficiently large C

and for z < v, let

(2.17) m3(z) = −p
ξ
ez/ξ

∫ v

z
(−s)p−1e−s/ξ ds+ e(z−v)/ξ

(
ev−w

(
m1(w)− pwp−1

)
− p(−v)p−1

)
.

The following intuitive lemma, whose simple proof is left to the reader, defines two new
functions on R4.

Lemma 2.6. For each x = (x1, x2) ∈ R4 there exists a unique pair {v, w} satisfying (2.7)
and such that the line segment connecting the points (w, ew) and (v, ev) passes through x.
Thus,

x2 = r(v, w)(x1 − w) + ew.

In the special case x = (0, 1) this segment degenerates into a point : v = w = 0.

From here on, we reserve the symbols w and v for the two functions on R4 given by this
lemma: w = w(x) and v = v(x); see Figure 3.

Finally, here is our complete Bellman candidate. For p > 2 and C > C0(p), let
(2.18)

bp,C(x) =



m1(u)(x1 − u) + up, x ∈ R1,

q(v, w) (x1 − w) + wp + m1(w)−q(v,w)
k(w)−r(v,w)

(
x2 − r(v, w)(x1 − w)− ew

)
, x ∈ R2,

m3(u)(x1 − u) + (−u)p, x ∈ R3,

q
(
v, w) (x1 − w) + wp, x ∈ R4.
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Figure 3. The subdomain R4 and the geometric meaning of v(x) and w(x)

Recall that here u = u(x) is given by (2.2); v = v(x) and w = w(x) have just been defined
in Lemma 2.6; k is given by (2.1); r and q are given by (2.5); m1 is given by (2.16);
and m3 is given by (2.17). In addition, w was defined in Lemma 2.4 as the solution of
equation (2.14), while v was defined in the remark following that lemma as the unique solution
of equation F (v, w) = 0 with F given by equation (2.7).

The next section presents the main theorem relating the candidate bp,C and the Bellman
function bp,C from (1.10).

3. The main Bellman theorem and a proof of the lower estimate

The following result is the principal ingredient in the proofs of Theorems 1.2 and 1.3.

Theorem 3.1. If p > 2 and C > C0(p), then

(3.1) bp,C = bp,C in ΩC .

As is common, we split the proof of Theorem 3.1 in two parts: the so-called direct inequality
bp,C ≥ bp,C and its converse.

Lemma 3.2. If p > 2 and C > C0(p), then

(3.2) bp,C ≥ bp,C in ΩC .

Lemma 3.3. If p > 2 and C > C0(p), then

(3.3) bp,C ≤ bp,C in ΩC .

The proofs of Theorems 1.2 and 1.3 use only Lemma 3.2, which we prove in this section. For
the sake of completeness, we will also show that the infimum in the definition of the Bellman
function is attained at every point in ΩC , and our candidate is in fact the Bellman function.
This is done in Section 5 where we prove Lemma 3.3.

The analog of Lemma 3.2 for p ∈ [1, 2] was proved in Section 5 of [8]. In fact, the proof
given there did not depend on the specific range of p used. Rather, its main ingredient was
showing that bp,C is locally convex in ΩC , i.e., convex along every line segment contained
in ΩC . More precisely, the main result of Lemma 5.1 from [8] can be restated as follows.
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Lemma 3.4 ([8]). Fix p > 0 and assume that for some C(p) ≥ 1 there is a family of functions
{bp,C}C≥C(p) satisfying the following conditions for each C :

(1) bp,C is locally convex in ΩC ;
(2) bp,C is continuous in ΩC ;
(3) For each x ∈ ΩC ,

lim
c↘C

bp,c(x) = bp,C(x);

(4) For each s ∈ R, bp,C(s, es) = |s|p.
Then for all C ≥ C(p),

bp,C ≥ bp,C in ΩC .

It is routine to check that conditions (2)-(4) are satisfied for bp,C from (2.18). Therefore,
Lemma 3.2 will be proved once we have established the following result.

Lemma 3.5. For p > 2 and C > C0(p), the function bp,C is locally convex in ΩC .

Let us fix p > 2 and C > C0(p) and through the end of this section write simply b for
bp,C . Before proving Lemma 3.5, let us collect several useful facts from earlier work. First,
as explained in [10] and [8], showing that b is locally convex in ΩC is the same as showing
that it is locally convex in each subdomain Rk and that bx2 is increasing in x2 across shared
boundaries between subdomains. Second, in R1 and R3, b has the form

b(x) = m(u)(x1 − u) + |u|p,

where m stands for m1 or m3, respectively, and in each case satisfies the differential equation

(3.4) m′(u) =
1

ξ
(m(u)− pu|u|p−2),

and u = u(x) is given by (2.2). As shown in [8], in such a case we have

(3.5) bx2 = m′(u)e−u(1− ξ)

and also

(3.6) bx1x1bx2x2 = b2x1x2 , sgn bx2x2 = sgn
(
m′(u)−m′′(u)

)
.

Therefore, to show that b is locally convex in R1 and R3 we simply need to show that
m′1(u)−m′′1(u) > 0 in R1 and m′3(u)−m′′3(u) > 0 in R3.

Proof of Lemma 3.5. We first show local convexity of b in each subdomain Rk.
In R1, a direct computation gives

ξ2

p(p− 1)
(m′1(u)−m′′1(u))e−u/ξ = ξup−2e−u/ξ − (1− ξ)

∫ ∞
u

e−s/ξsp−2 ds =: H1(u),

where u ≥ w. We have

H ′1(u) = ξup−3e−u/ξ(p− 2− u).

Therefore, H1 is increasing for u ∈ (0, p− 2) and decreasing for u > p− 2. Since H1(u)→ 0
as u → ∞, to show that H1(u) > 0 for u ≥ w, it suffices to show that H1(w) > 0. This
immediately follows by applying first (2.14) and then (2.10) with w = w :

(1− ξ)
∫ ∞
w

e−s/ξsp−2 ds =
ξew(1−1/ξ)

p(p− 1)
D(w) < ξwp−2e−w/ξ.

Therefore, bx2x2 > 0 in R1 and so b is locally convex in this subdomain.
In R2, b is affine and thus locally convex.
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In R3, we compute

ξ2

p(p− 1)
(m′3(u)−m′′3(u))e−u/ξ

= ξ(−u)p−2e−u/ξ − (1− ξ)
(∫ v

u
e−s/ξ(−s)p−2 ds+ e(w−v)(1/ξ−1)

∫ ∞
w

e−s/ξsp−2 ds
)

=: H3(u),

where u ≤ v. We have

H ′3(u) = ξ(−u)p−3e−u/ξ(u− p+ 2) < 0,

and so to show that H3(u) > 0, it is enough to show that H3(v) > 0. Similarly to the case of
H1, this follows from an application of (2.14) and then of (2.9) with v = v :

(1− ξ)e(w−v)(1/ξ−1)

∫ ∞
w

e−s/ξsp−2 ds =
ξe−v(1/ξ−1)

p(p− 1)
D(w) < ξ(−v)p−2e−v/ξ.

Thus, b is locally convex in R3.
Let us state the result for R4 separately.

Lemma 3.6. b is convex in R4.

Proof. In R4, b is given by

b(x) = q(v, w)(x1 − w) + f(w), x2 = r(v, w)(x1 − w) + g(w),

where, as in the proof of Lemma 2.3, we write f(w) = wp and g(w) = ew. Let us also, as we
did there, use the prime to indicate the total derivative with respect to w.

To show that b is convex, we show that bx1x1bx2x2 = b2x1x2 and bx2x2 > 0 in the interior of
R4. Differentiating gives

wx1 =
−r

r′(x1 − w)− r + g′
, wx2 =

1

r′(x1 − w)− r + g′
,

and

bx1 =
[
q′(x1 − w)− q + f ′

]
wx1 + q = −r q

′(x1 − w)− q + f ′

r′(x1 − w)− r + g′
+ q = −rD + q,

where we used (2.11). Similarly,

(3.7) bx2 =
[
q′(x1 − w)− q + f ′

]
wx2 =

q′(x1 − w)− q + f ′

r′(x1 − w)− r + g′
= D.

Therefore,

bx1x1 = −rD′wx1 , bx1x2 = −rD′wx2 , bx2x2 = D′wx2 ,

and, since, wx1 = −rwx2 , we see that bx1x1bx2x2 = b2x1x2 .
Furthermore, since by Lemma 2.3, D′ > 0 and since it is clear from geometry that wx2 > 0,

we have bx2x2 > 0, which completes the proof. �

To finish the proof of Lemma 3.5, we need to verify that bx2 is increasing in x2 across
boundaries between subdomains. We can write this requirement symbolically as:

bx2

∣∣∣
R1,u=w

≤ bx2
∣∣∣
R2

, bx2

∣∣∣
R4,w=w

≤ bx2
∣∣∣
R2

, bx2

∣∣∣
R2

≤ bx2
∣∣∣
R3,u=v

.

In fact, all three statements hold with equality (which implies that b is of class C1 in the
interior of ΩC , though we will not use this fact).
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From (3.7), we have bx2
∣∣
R4,w=w

= D(w). Using, in order, (3.5), (3.4), (2.16), integration by

parts, and (2.14) gives:

(3.8) bx2

∣∣∣
R1,u=w

= m′1(w)e−w(1− ξ) =
1

ξ
(1− ξ)p(p− 1)ew(1/ξ−1)

∫ ∞
w

sp−2e−s/ξ ds = D(w).

A very similar calculation, but using (2.17) in place of (2.16), gives bx2
∣∣
R3,u=v

= D(w).

Finally,

bx2

∣∣∣
R2

=
m1(w)− q(v, w)

k(w)− r(v, w)
.

By (3.4) and (3.8),

m1(w) = ξm′1(w) + pwp−1 =
ξ

1− ξ
ewD(w) + pwp−1.

Therefore,

bx2

∣∣∣
R2

=

ξ
1−ξ e

wD(w) + pwp−1 − q(v, w)
1

1−ξ e
w − r(v, w)

=

ξ
1−ξ e

wD(w) +
(
ew − r(v, w)

)
D(w)

1
1−ξ e

w − r(v, w)
= D(w).

The proof is complete. �

We are now in a position to prove the main theorems stated in Section 1.

4. Proofs of Theorems 1.2 and 1.3

We will need two auxiliary results from [8].
For p > 0, let

ω(p) =

[
p

e

(
Γ(p)−

∫ 1

0
tp−1et dt

)
+ 1

]1/p

.

Lemma 4.1 ([8]). Let ϕ0(t) = log(1/t), t ∈ (0, 1). Then

(4.1) εϕ0 = 1, ε−ϕ0 =∞.

If p ≥ 1, then

(4.2) ‖ϕ0‖BMOp((0,1)) = ω(p).

Consequently,

(4.3) ε0(p) ≤ ω(p).

Lemma 4.2 ([8]). Let ϕ be a non-constant BMO function. For ε ∈ [0, εϕ), let F (ε) = [eεϕ]A∞ .
Then F is a strictly increasing, continuous function on [0, εϕ), and limε→εϕ F (ε)=∞.

Proof of Theorem 1.2. We use Theorem 1.4 with bC = bp,C given by formula 2.18. By
Lemma 3.2, bC ≤ bp,C , as required.

We need to compute bp,C(0, C). Note that by Lemma 2.4, w < ξ, and, thus, v > −w > −ξ
by Lemma 2.2. Therefore, the point (0, C) is in subdomain R3 and, since u(0, C) = −ξ,

bp,C(0, C) = m3(−ξ)ξ + ξp.

Now, m3(−ξ) is given by (2.17):

m3(−ξ) = −p
ξ
e−1

∫ v

−ξ
(−s)p−1e−s/ξ ds+ e(−ξ−v)/ξ

(
ev−w

(
m1(w)− pwp−1

)
− p(−v)p−1

)
.



14 LEONID SLAVIN AND VASILY VASYUNIN

By Lemma 2.4, w ∈ (0, c2) with c2 → 0 as ξ → 1. By Lemma 2.2, v ∈ (−w, 0). Therefore,

lim
ξ→1

v = lim
ξ→1

w = 0

and

lim
C→∞

bp,C(0, C) = lim
ξ→1

(
m3(−ξ)ξ + ξp

)
= −p

e

∫ 0

−1
(−s)p−1e−s ds+ e−1m1(0) + 1 = ωp(p),

where we used (2.16), whereby m1(0) = pΓ(p).
Hence, by Theorem 1.4, ε0(p) ≥ ω(p), and Lemma 4.1 now finishes the proof. �

The proof of Theorem 1.3 below is a variation of the argument for Corollary 1.5 in [8]; the
proof of sharpness, using function ϕ0 from Lemma 4.1, is exactly the same and we omit it.

Proof of Theorem 1.3. Take any ϕ ∈ BMO(Q). Without loss of generality, assume εϕ < ∞.
For ε ∈ [0, εϕ), let F (ε) = [eεϕ]A∞(Q). By Lemma 4.2, for sufficiently large ε we have F (ε) ≥
C0(p). Therefore, for any subinterval J of Q,

〈|εϕ− 〈εϕ〉
J
|p〉

J
≥ bp,F (ε)

(
0, 〈eεϕ−〈εϕ〉J 〉

J

)
≥ bp,F (ε)

(
0, 〈eεϕ−〈εϕ〉J 〉

J

)
.

Take a sequence {Jn} such that 〈eεϕ−〈εϕ〉Jn 〉
Jn
→ F (ε). Since the left-hand side is bounded

from above by εp‖ϕ‖pBMOp(Q), we have

εp‖ϕ‖pBMOp(Q) ≥ bp,F (ε)

(
0, F (ε)

)
.

Now, take ε→ εϕ (and, thus, F (ε)→∞). This gives

εpϕ‖ϕ‖
p
BMOp(Q) ≥ ε

p
0(p).

Take any f ∈ L∞(Q), then εϕ−f = εϕ. Thus, we can replace ϕ with ϕ−f above, which gives

‖ϕ− f‖BMOp(Q) ≥
ε0(p)

εϕ
.

The same inequality holds with ϕ replaced with −ϕ, and it remains to take the infimum over
f ∈ L∞(Q) on the left. �

5. Optimizers and the converse inequality

In this section, we complete the proof of Theorem 3.1 by proving Lemma 3.3. To that end,
we present a set of special test functions on the interval (0, 1) that realize the infimum in
definition (1.10) of the Bellman function bp,C .

Without loss of generality assume C > 1. Let Q = (0, 1). Recall the Bellman candidate
bp,C given by formula (2.18). For x ∈ ΩC , we say that a function ϕx on Q is an optimizer
for bp,C at x if

(5.1) ϕx ∈ Ex,C,Q and 〈|ϕx|p〉Q = bp,C(x),

where the set of test functions Ex,C,Q is defined by (1.9). Observe that if we have such a
function ϕx for all x ∈ ΩC , then

bp,C(x) = 〈|ϕ|p〉
Q
≥ bp,C(x),

which is the statement of Lemma 3.3.
Our optimizers ϕx will have different forms depending on the location of x in ΩC . Specifi-

cally, we will have a different optimizer for each of the four subdomains Rk of ΩC defined by
formula (1.8) and pictured in Figure 2. We do not discuss the construction of these optimizers,
but simply give formulas for them. A reader interested in where they come from is invited
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to consult papers [10] and [3], where a number of similar constructions are carried out in the
context of BMO2.

For each x ∈ R1, let

(5.2) ϕx(t) = u+ ξ log
(
α
t

)
χ(0,α)(t),

where u = u(x) is defined by (2.2) and we set

(5.3) α =
x1 − u
ξ

.

(This optimizer was defined in Section 5 of [8] under the name ϕ+
x .)

Now consider the subdomain R2. Let us give names to its four corners, clockwise from top
right:

X = (w + ξ, ew+ξ), Y = (w, ew), Z = (v, ev), W = (v + ξ, ev+ξ).

We already know the optimizers for the points X, Y, and Z : the first comes from formula (5.2)
(which applies since X ∈ R1∩R2 ) with α = 1; the other two are trivial, since for each x ∈ Γ1,
the set Ex,C,Q contains only one element — the constant function ϕ(t) = x1. Therefore, we
define, for all t ∈ Q,

ϕX(t) = ξ log
(

1
t

)
, ϕY (t) = w, ϕZ(t) = v.

We now use these three optimizers to define ϕx for every x ∈ R2. Observe that R2 is
contained in the triangle with the vertices X, Y, Z. This means that every x in R2 has
a unique representation as a convex combination of these three points. Thus, there exist
non-negative numbers α1, α2, and α3 such that α1 + α2 + α3 = 1 and

(5.4) x = α1X + α2Y + α3Z.

To obtain ϕx, we concatenate ϕX , ϕY , and ϕZ in the appropriate proportion:

ϕx(t) = ϕX
(
t
α1

)
χ(0,α1)(t) + ϕY

(
t−α1
α2

)
χ(α1,α1+α2)(t) + ϕZ

(
t−α1−α2

α3

)
χ(α1+α2,1)(t),

or, equivalently,

(5.5) ϕx(t) = wχ(0,α1+α2)(t) + ξ log
(
α1
t

)
χ(0,α1)(t) + v χ(α1+α2,1)(t),

with αk = αk(x) defined by (5.4).
This formula applies, in particular, to the fourth corner of R2, i.e., the point W. That point

also lies in the subdomain R3, and is the key to defining the optimizer for all other points in
that subdomain. Specifically, with the knowledge of ϕW we define the optimizer ϕx for an
arbitrary point x ∈ R3 by the formula

(5.6) ϕx(t) = ϕW
(
t
τα

)
χ(0,τα)(t) + ξ log

(
α
t

)
χ(τα,α)(t) + uχ(τα,1)(t).

Here, u is given by (2.2), α is given by (5.3), and we also set

(5.7) τ = e(u−v)/ξ.

It remains to define ϕx when x ∈ R4. Recall the two auxiliary functions v = v(x) and
w = w(x) defined by Lemma 2.6 (see Figure 3). Every point x ∈ R4\Γ1 lies on the line segment
connecting the points (v, ev) and (w, ew). Accordingly, we define ϕx to be the appropriate
concatenation of the two constant optimizers corresponding to those points:

(5.8) ϕx(t) = wχ(0,β)(t) + v χ(β,1)(t),

where we set

(5.9) β =
x1 − v
w − v

.
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The following lemma immediately yields Lemma 3.3.

Lemma 5.1. Let ϕx be defined by (5.2) and (5.3) for x ∈ R1; by (5.4) and (5.5) for x ∈ R2;
by (5.6), (5.3), and (5.7) for x ∈ R3; and by (5.8) and (5.9) for x ∈ R4. Then ϕx is an
optimizer for bp,C at every x ∈ ΩC .

Remark 5.2. If a point x lies on a boundary shared by two subdomains, ϕx seems to be
defined by two different formulas. However, as is easy to check, in all cases above, such two
formulas give exactly the same function.

The proof of this lemma is very similar to the proof of Lemma 5.2 from [8] and we leave it
to the reader.
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